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We report on molecular-dynamics simulations of the drag force experienced by a smooth sphere as it
approaches a smooth planar surface to test the predictions of classical hydrodynamic theory. We use a simple
repulsive Lennard-Jones-like model to represent the fluid interactions, and calculate the total force on the
sphere as a function of its radius, velocity, and distance from the surface. We find that the presence of static
solvation forces complicates the testing of hydrodynamic theory which predicts a divergent repulsive lubrica-
tion force as the gap vanishes. The solvation force contribution is most prominent at small gaps and small
velocities. For a smooth wall its presence can lead to a total force that is oscillating between positive and
negative, quite different from the hydrodynamic prediction. To enable an improved test of the lubrication
predictions, we propose a different approach that measures the total force for approaching as well as receding
spheres. We suggest a simple general analysis that decouples the dynamic and static force contributions on the
sphere. The new decoupling method is applicable to simulations and laboratory experiments alike. We illustrate
its power by applying it to the molecular-dynamics data.
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I. INTRODUCTION

A particle moving through a viscous fluid is subject to a
drag that resists the motion. The drag force is an increasing
function of the particle’s velocity U, and it can be determined
experimentally from a settling experiment by measuring the
terminal velocity. Indeed, for a spherical particle this mea-
surement provides the traditional route to the fluid viscosity.
It uses a result due to Stokes �1�, who applied hydrodynamic
theory under conditions of creeping flow to show that the
drag force is proportional to the sphere’s radius b and the
fluid viscosity �. Hence the force is commonly known as
Stokes drag or Stokes’ law. If the sphere falls toward a planar
wall, the drag force also becomes a function of the separa-
tion, h, from the wall. Well away from the wall the drag
force approaches Stokes drag, but the drag force increases
rapidly close to the wall. An analytical solution to this well-
known hydrodynamics problem was first provided by Bren-
ner in 1961. Brenner’s solution �2� exhibits a divergence �as
1/h� in the limit that h→0. The divergence is, of course,
inherent to the underlying approximations made in the con-
tinuum hydrodynamics, among which is the assumption that
the fluid is a continuum with a spatially constant density.
However, we certainly know that at a small enough length
scale there will come a point where the fluid density will
display the signs of its particulate nature. That is, if the gap
between the sphere and the wall is reduced to molecular size,

�, we expect the hydrodynamic solution to become unphysi-
cal, even for a perfectly smooth sphere. The natural ques-
tions to be asked therefore include the following: what is the
precise nature of the breakdown of hydrodynamics, at what
length scale can it be observed, and how can we measure this
in an experimental situation?

Several years ago, Vergeles et al. �3,4�, following in the
footsteps of Alder et al. �5�, set out to use molecular dynam-
ics �MD� to address the first two questions. Vergeles et al.
performed a detailed study of both the translational and ro-
tational motion of a single sphere in a Lennard-Jones �LJ�
fluid as it approaches a planar wall. These authors concluded
that the MD simulations confirmed the hydrodynamic predic-
tions away from the wall, while close to the wall the un-
physical divergence is removed.

An issue that was not addressed by Vergeles et al. �3,4�,
and which prompted the simulations reported here, concerns
the role played by the solvation force that acts between any
two surfaces immersed in a fluid. The solvation force has a
purely thermodynamic origin. It is a derivative of a surface
free energy with respect to separation and acts at equilib-
rium. It can and has been measured in a simulation and cal-
culated from liquid state theories of inhomogeneous fluids
�e.g., �6,7��. Solvation forces can also be probed with a sur-
face force apparatus �SFA� �8�, an atomic force microscope
�AFM�, or the interfacial force microscope �IFM�, which di-
rectly measure the force versus separation curve between two
surfaces. In addition, the more indirect method of osmotic
stress measurements provides information about the solva-
tion force acting between arrays of macromolecules in solu-
tion �9�.

The form and the range of the solvation force �10� can
vary widely depending on the nature of the solution as well
as that of the surface. For instance, the interaction between
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two similarly charged surfaces in an aqueous solution is re-
pulsive and electrostatic in origin. Its characteristic range is
set by the Debye screening length, which strongly depends
on the ionic strength of the solution. The interaction range is
large �short� for low �high� ionic strength, and is often well-
described by Derjaguin, Landau, Verwey, and Overbeek
�DLVO� �8� theory. Two hydrophobic surfaces can also in-
teract over large distances up to a �m via an attractive force.
Finally, in a molecular fluid composed of roughly spherical
molecules �e.g., water, argon, octamethylcyclotetrasiloxane
�OMCTS��, one observes a short-ranged force that is, if the
opposing surfaces are sufficiently smooth, oscillating be-
tween repulsive and attractive on the scale of �.

Therefore, for a sphere that is slowly moving through a
molecular fluid and closely approaching a planar wall, one
must expect to measure a force that resembles the solvation
force. Indeed, in the limit that U=0, one obtains the solva-
tion force exactly. This observation contrasts with the hydro-
dynamic prediction �Brenner�, which approaches zero in that
limit. At higher velocities one expects to see a signature of
the solvation force �as indicated by the results of Vergeles et
al.� but now the solvation force is coupled with the velocity-
dependent dynamic contribution of the kind described by
Brenner.

The presence of the solvation force implies that any com-
parison of fluid drag between a molecular simulation and
hydrodynamics must address the dependence on U. The
same conclusion applies to an SFA, AFM, or IFM experi-
ment.

We start our article by outlining the salient hydrodynamic
relations, and describing the details of our MD simulations in
the next two sections. The simulation results of fluid drag
force for various cases will be presented in the subsequent
section with an analysis of a drag force decomposition that
reconciles the solvation force and the hydrodynamic force in
an intuitively logical manner, and which can equally be ap-
plied in experimental investigations.

II. HYDRODYNAMICS

The case of a sphere moving toward a planar wall is, of
course, a well-known problem in hydrodynamics. In 1961,
Brenner provided the analytical solution for the force on
such a sphere of radius b, with its leading edge a distance h
away from the wall as it moves at a velocity U through a
fluid of viscosity �,

FB = 6��bU� , �1�

where �=��h /b� is given by

� =
4

3
sinh ��

n=1

�
n�n + 1�

�2n − 1��2n + 3�

�� 2 sinh�2n + 1�� + �2n + 1�sinh 2�

4 sinh2�n + 1/2�� − �2n + 1�2 sinh 2�
− 1� , �2�

and where we used the following shorthand notation:

� = cosh−1�h/b + 1� . �3�

Thus, far away from the wall �h→��, the sphere experiences
a constant force �Stokes drag�,

FS = 6��bU �4�

while in the opposite limit, close to the wall, the force di-
verges as 1/h,

FB → 6��b2U/h . �5�

III. SIMULATION METHODS

The MD simulations were performed with a rectangular
box �of dimensions Lx�Ly �Lz ,Lx=Ly,� with periodic
boundaries applied to the x and y directions while a pair of
parallel walls was placed perpendicular to the z direction.
The fluid particles have a mass m, and interact via a pair
potential. For the fluid-fluid interaction potential, we chose
the Week, Chandler, and Andersen �WCA� potential �11�,
which is a cut and shifted 12-6 LJ potential cut at the mini-
mum rc /�=21/6�1.122,

	�rij� = 		12−6�r� − 	12−6�rc� , r 
 rc

0, r � rc,

 �6�

where rij = �ri−rj� denotes the scalar distance between par-
ticles i and j and

	12−6�r� = 4����

r
12

− ��

r
6� . �7�

The parameters � and � are used as the basic units of energy
and length, respectively. Velocities will be reported in units
of �� /m and time in units of �m�2 /�. This particular inter-
molecular potential �Eq. �6�� is extremely convenient be-
cause it is short-ranged, is purely repulsive, has a zero force
at the cutoff, and is known to give an excellent representa-
tion of the structure and dynamics of the full LJ potential.

Each of the planar walls acts as a one-body external field
on the fluid. For this particular finite-ranged interaction we
use an integrated LJ potential, namely a cut and shifted 9-3
potential, viz.,

Vext�z� = 		wf�z� − 	wf�zc� , z 
 zc

0, z � zc,

 �8�

where z= �zi−zw� denotes the distance of particle i from a
wall �located at zw=0 and zw=Lz�, and

	wf�z� = �wf�2/5�1/2�1

5
��

z
9

−
3

2
��

z
3� . �9�

The value of the cutoff is set at zc /�=2.5 and this gives the
external field a short-ranged attraction.

The potential between the fluid particles and the sus-
pended sphere of diameter d is spherically symmetric and
given by a modified WCA potential. That is,
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	sf�r� = 		12−6�r − d/2� − 	12−6�rc� , r 
 rc + d/2

0, r � rc,



�10�

where r is the distance between a fluid particle and the center
of the sphere and the shifted argument r−d /2 indicates that
potential is acting from the surface of the sphere. Note that
we use the same value for rc as for the fluid-fluid interaction,
which implies that 	sf is again purely repulsive. Also, for a
point-sized sphere �d=0� the sphere-fluid potential reduces
to the fluid-fluid potential.

Finally, for the interaction between the sphere’s surface
and the wall we simply employ a hard-wall potential,

	ws�z� = 	� , z 
 0

0, z � 0.

 �11�

Thus, the closest approach of the center of a sphere from
zw=0 or zw=Lz is d /2, at which time a hard-sphere collision
is performed for the sphere by simply reversing the direction
of the sphere’s velocity. The above choice was made entirely
for simplicity. The wall contribution to the total force on the
wall is simply additive; thus, any other functional form for
the wall-sphere interaction that one would like to consider
can be simply added to the results presented below.

It is worth stressing that the details of the potentials used
here are not expected to affect the results of the drag force in
any significant way. As mentioned, the WCA fluid is very
similar in structure to a LJ fluid at the same density and
temperature. Similarly, the range or strength of the sphere-
fluid interaction should not affect the Stokes drag. All one
aims for is that the wall-fluid and sphere-fluid potentials are
conducive for wetting by the fluid.

A typical simulation was started by implanting a sphere of
diameter d inside a regular fcc crystal lattice of WCA par-
ticles, removing those particles that overlapped with the im-
planted sphere. Following Vergeles et al. �3,4�, the crystal
density was set at �3=0.8, and the starting system was then
prepared by first melting the crystal at a high temperature
and then equilibrating at the final temperature of kT /�=1.2.
The simulations were run in the NVT ensemble using the
Hoover-Nose thermostat to keep the temperature constant
�12�.

The sphere was set moving in the z direction at a constant
velocity U, which is equivalent to setting the sphere’s mass
to infinity. During a run we calculate the z component of the
total force on the sphere exerted by the fluid particles and
collect the data in a histogram of width approximately 0.05�
to create a force profile. Typically, the initial position of the
sphere is at one end of the box, touching �or almost touch-
ing� the nearest wall while set to move toward the other end.
Most runs ended when the opposite wall was reached, but in
some cases we continued the run after the sphere performed
a hard-sphere collision with the target wall.

In order to analyze the data, and to compare the force on
the sphere with the hydrodynamic prediction, we require the
viscosity of the bulk fluid at kT /�=1.2 and �3=0.8. Various
simulation strategies are available to determine the viscosity
�12�. We elected to perform a separate set of bulk simulations

in a cubical box to generate the stress-stress correlation func-
tion. Following the Green-Kubo formalism �11�, we ex-
tracted the viscosity to obtain ��m� /�2=1.74. We use this
value throughout this paper. We also note that the falling
sphere simulations themselves can serve as an independent
check on the value of � as in the bulk we should recover
Stokes’ law.

IV. RESULTS

Simulations were run for four different sphere sizes. In
terms of the fluid particle diameter these are d /�=4, 8, 10,
and 15. As the sphere size increases, the number of fluid
particles, N, needs to grow as well to ensure a sufficiently
large simulation box such that there is no significant interac-
tion between the images of the sphere and the interfacial
regions near the walls. The pertinent details have been col-
lected in Table I.

To compare our MD results with the hydrodynamic pre-
dictions �i.e., Eq. �1��, we have to assign a parameter, b, to
the radius of the falling sphere, and a parameter, h, to the
separation between the sphere’s surface and the planar wall.
In molecular systems size is not a uniquely defined quantity;
it is the interaction potentials and the temperature combined
that determine how close two fluid particles, or a fluid par-
ticle and a sphere, or a sphere and a wall can approach.

The smallest possible separation between the center of a
fluid particle and the center of the sphere is exactly d /2, but
this is not necessarily a good indication of the size. Since the
interaction potential �Eq. �10�� rises very steeply when the
separation is less than �d /2+�, the corresponding Boltz-
mann factor, exp�−	sf /kBT�, is so small that such a separa-
tion is hardly ever observed. In practice, the smallest ob-
served separation is roughly d /2+�, and throughout this
paper we will follow Vergeles et al. �3,4� and settle on the
identification b=d /2+� �13�. Liquid state perturbation
theory �11� has developed more sophisticated criteria for as-
signing an effective hard-sphere diameter to particles inter-
acting via soft potentials. For the present conditions, such a
calculation would give no significant change, i.e., we obtain
b=d /2+1.0056�. For typical liquid state conditions, the
more sophisticated value for b−d /2 can be expected to be
within 3% of �.

Since the sphere and the wall interact via an infinitely
hard and perfectly short-ranged potential, the distance be-
tween the wall and the sphere is well-defined. That is, the
smallest distance between the sphere’s surface and the wall is
zero, and this coincides with our interpretation of h. We rec-
ognize that an alternative definition of h would result if we

TABLE I. Simulation details.

N Lx /� Lz /Lx d /� b

4002 13.68 2 4 3

32328 27.36 2 8 5

32018 27.19 2.5 10 6

213880 51.3 2 15 8.5
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generalize the viewpoint expressed above, when defining b.
That interpretation would identify h as the distance between
two equipotential surfaces for the fluid, that is, one potential
surface located at z=� �and for the opposing wall at z=Lz
−�� and one associated with a radial distance r=d /2+�
from the sphere’s center. Such a choice would differ from
our hard-sphere/hard-wall choice by 2�.

Clearly, the degree in arbitrariness of the definitions of h
and b is intrinsic to molecular systems and thus has to be
accepted. It equally affects the comparisons presented here
as those reported in AFM studies.

We first present the results for the solvation force �Fsolv�,
that is, the force on the sphere when U=0. In Fig. 1, we plot
the total force �F� /�� on the sphere as a function of the
dimensionless separation. We display the data in two differ-
ent ways, as a function of h /� �Fig. 1�a�� and as a function of
h /b �Fig. 1�b��. The data represent force curves typically
found for a one-component fluid confined between a smooth
planar wall and a smooth sphere. Each force data point, at a
particular dimensionless separation, is an average of Fz ob-
tained from a simulation of a stationary sphere conducted
over 20000 time steps �100 time units.� The data points are
spaced equally with a separation of 0.05�, and the entire
force curve is smoothed using a Savitzky-Golay smoothing
filter �14�. The force oscillates between positive �repulsive�
and negative �attractive� with a period that closely reflects

the molecular size of the fluid particles, �, and with an am-
plitude that decreases with h. Note that the solvation force
displays attractions even though the fluid-fluid interaction
itself is purely repulsive. Figure 1�a� shows that the ampli-
tude of the oscillations increases with sphere size, in accor-
dance with the Derjaguin approximation, which predicts that
the force is proportional to the sphere diameter �8�. The two
curves remain perfectly in phase with each other. Figure 1�b�
highlights the effects of plotting the data versus h /b, the
natural hydrodynamic separation variable. As the sphere size
increases, the oscillations become more rapid on the h /b
scale, but interestingly the maxima and minima each appear
to share a common envelope. The solvation force found here
from a simulation can be compared directly to both SFA
measurements �8� as well as AFM measurements.

The nonzero force on the sphere for U=0 is the first and
perhaps clearest indication that the hydrodynamics result is
expected to be incorrect for the case of small velocities and
small sphere-wall separations. Our system, consisting of
smooth planar walls, a smooth sphere, and a one-component
fluid, displays the strongest signature of the structure and
interactions of the fluid confined to the gap between the
sphere and the wall. The pronounced layering of the fluid
particles that gives rise to the pronounced force oscillations
is known to be strongly affected by molecular surface rough-
ness. However, some years ago Frink and van Swol �7� have
demonstrated that surface roughness does not lead to a can-
cellation or “washing out” of the solvation force. Rather, for
typical wetting surfaces such as the ones used here, the sol-
vation force for a rough surface was found to exhibit a broad
purely repulsive feature. Only at very small separations does
an attraction survive due to completely empty parts of the
gap. Within a superposition approximation the solvation
force for a rough surface can be written simply as a weighted
average over the smooth surface solvation force. For ex-
ample, for a slitlike gap the average over a gap with rough
surfaces is an average over different local separations of

smooth gaps, and hence Fsolv
rough�h̄� can be conveniently ex-

pressed in terms of a normalized probability density distri-

bution, Pr�h ; h̄�, of local separations �see �7��,

Fsolv
rough�h̄� � �

0

�

dh�Fsolv
smooth�h��Pr�h�; h̄� , �12�

where h̄ denotes the nominal gap size of a slit with rough
surfaces. From this we can see that the reason for the non-
cancellation of attractions and repulsions lies therefore in the
presence of the first strong peak, which is repulsive �and
associated with squeezing out the very last molecular layer�
and the decaying amplitude of the extrema in the force. For a
detailed analysis with explicit examples, we refer the reader
to Ref. �7�. In summary, molecular roughness can strongly
affect the appearance of the solvation force, but typically not
its presence �15� altogether.

We now turn our attention to a small but nonzero value of
U. In Fig. 2, we present the drag force �16� results for U
=0.01 and b=3. This corresponds to a Reynolds number, Re,
well below 1, namely Re=Ub /�=0.014. The force curves

FIG. 1. The solvation force �i.e., U=0� as a function of separa-
tion. The results shown are for d=4 or b=3 �cross� and d=8 or b
=5 �circle�. In �a� we plot versus h /�, while in �b� we plot the same
data versus h /b. For clarity, only a few points are highlighted with
symbols in all the figures.
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for nonzero sphere velocities are obtained by averaging over
20 simulations, each of which starts at the same separation
from the wall but with a different particle configuration. The
force points themselves are averaged over a distance of
0.05� in a simulation. As mentioned earlier, curve smoothing
has been employed for presenting the figures. It is clear that
the hydrodynamic prediction, Eq. �1�, performs poorly,
whenever it deviates substantially from the large h limit, i.e.,
simple Stokes drag. The drag force appears essentially as
shifted upward from the equilibrium solvation force. This
suggests that for sufficiently small U, the measured drag
force can be interpreted as a simple superposition of two
contributions. One is an h-dependent “static” force �i.e., sol-
vation force� and the other is a dynamic contribution that
depends on both h and U, viz.,

F�U;h� = F�0;h� + Fdyn�U;h� . �13�

The results for a larger velocity of the sphere are shown in
Fig. 3, where we plot the drag force for U=0.2 and b=3. The
above-suggested superposition still seems to be useful as a
guide, although for h /b�1 the measured force is somewhat
above Fsolv but not quite as high as FB. Clearly, with increas-

ing U the Brenner expression starts to overpredict the drag
force. We note that much larger values of Re are not really
accessible for a sphere of this size. The average speed of a
fluid particle is given by �8kT / �m���1.75�� /m for our
temperature, kT /�=1.2. The isothermal speed of sound is
approximately 5.6�� /m. When the sphere velocity ap-
proaches the average fluid particle speed, local heating will
start to play a considerable role and one cannot expect
simple isothermal fluid flow to persist.

To study the effect of sphere size, we simulated spheres
with diameter varying from 4 to 15 �see Table I�. The Rey-
nolds number was kept constant at Re=0.1954 while varying
the sphere size and velocity reciprocally. Thus, Brenner’s
prediction should be the same for all sphere sizes, as should
the Stokes drag. However, this is not observed in the simu-
lation results close to the surface. An example of the results
is shown in Fig. 4. We see from this figure that the discrep-
ancy between the measured drag force and Brenner’s predic-
tion does not diminish with increasing diameter.

We will now consider a sphere moving away from a wall
with a velocity U. Within hydrodynamic theory this does not
present anything new: the drag force, Eq. �1�, merely
changes sign, now pointing toward the wall �see Fig. 5�.
Thus, within hydrodynamics the drag force is antisymmetric:
positive �repulsive� when moving toward the wall, and nega-
tive �attractive� when moving away. We find that the
molecular-dynamics results are qualitatively quite different
from this picture �see Fig. 5� near the wall �i.e., h /b
1.� We
observe that when the sphere moves outward it experiences a
drag force that is not merely the negative of the drag force
when moving toward the wall. Instead, the force is consid-
erably less negative near the wall than antisymmetry would
suggest. Therefore, we can conclude that antisymmmetry in-
herent to the hydrodynamic theory is not shared by the actual
MD simulations.

The lack of antisymmetry indicates that the measured
drag force near the wall contains a contribution that is inde-
pendent of U �cf. Eq. �13��. One can easily discern regularly
spaced and proportionately decaying oscillations close to the
wall, irrespective of the direction of motion of the sphere,
that are reminiscent of solvation force oscillations. This

FIG. 2. The drag force �solid curve with crosses� as a function
of separation at U=0.01 for b=3. The solid curve with circles rep-
resents the associated solvation force, the broken line represents the
Stokes drag, while Brenner’s result, Eq. �1�, is shown as a broken
curve with crosses.

FIG. 3. The drag force �solid curve with crosses� as a function
of separation at U=0.2 for b=3. Symbols are the same as in Fig. 2.

FIG. 4. The drag force �solid curves� as a function of separation
at Re=0.1954 for varying sphere sizes: b=3 �triangle�, b=5 �aster-
isk�, and b=8.5 �cross�. Thin solid curve represents the Stokes drag,
while the broken curve represents Brenner’s prediction.
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static contribution approaches the solvation force in the limit
of small U, not presented here. The aforementioned superpo-
sition approximation suggests that by assuming that
Fdyn�U ;h� is antisymmetric, we can, in fact, extract a static
and a dynamic component as follows:

Fstatic�U;h� =
1

2
�F�U;h� + F�− U;h�� , �14�

Fdyn�U;h� =
1

2
�F�U;h� − F�− U;h�� . �15�

Defining the static force as a velocity-dependent function
makes it slightly more general than a simple superposition
approximation �17�. The static force �Eq. �14�� vanishes for
large h, while the dynamic force �Eq. �15�� should approach
a nonzero value, namely the Stokes drag �Eq. �4��. The simu-
lations presented in this paper provide a straightforward test
of the decomposition approach. In Fig. 6, we present an ex-
ample of the decomposition for U=0.1. We see that for this
velocity, the suggested decomposition consitutes a very sat-
isfactory approach, despite the considerable noise present.
The static force Fstatic is clearly consistent with the solvation
force, and the dynamic force displays the correct large h
limit. We note that the dynamic force does not appear to be a
strong function of h. Fdyn does not exhibit the strong upturn
of Brenner’s force very close to the wall.

We stress that the decoupling introduced here is specifi-
cally aimed at separating the solvation interaction from a
hydrodynamic contribution, relying on the antisymmetric na-
ture of the latter. Of course, in any �computer� experiment
one may encounter situations where the approaching and re-
tracting force curves differ for reasons other than strictly
hydrodynamic interactions. This can occur, for instance, in
AFM measurements using probes covered with compliant
self-assembled monolayers. A computer modeling example
can be found in a recent paper by Drazer et al. �18�, who

used molecular simulation to study nonequilibrium effects in
the adhesion of nanoparticles to cylindrical walls. These au-
thors report hysteresis between the approach of a spherical
object toward a dynamic and compliant wall, and the subse-
quent pull-off. Using a quasistatic movement of the sphere to
obtain the free-energy changes, Drazer et al. �18� obtained
two force curves that clearly differ with the direction of the
movement. Rather than a sign of hydrodynamic interactions,
in this case, the direction dependence of the force likely
points to the existence of metastable states. These metastable
states cause the measured force to exhibit a history depen-
dence �19�.

V. DISCUSSION

In this paper, we have used MD to revisit the problem of
a sphere moving toward a planar wall. The simulations dem-
onstrate that the role of the equilibrium solvation force is an
important one. The solvation force has a thermodynamic ori-
gin and is present at any velocity. But the solvation force
becomes the dominant contributor to the measured drag
force at small approach velocities �i.e., in the limit U→0�
close to the surface. This is in marked contrast to hydrody-
namic theory, which predicts a divergent drag force close to
the surface.

FIG. 5. The drag force as a function of separation for a sphere of
size b=5 moving toward �and away from� a surface at U=0.1. The
solid curve with crosses represents the force on the sphere while
receding from the surface, and the solid curve with circles denotes
the force while approaching the surface. The broken curves repre-
sent drag force from Brenner’s prediction, the positive curve for the
sphere approaching the surface and the negative curve for the re-
ceding sphere.

FIG. 6. The static �a� and the dynamic �b� component of the
drag force as a function of separation for a sphere moving toward a
wall with a velocity U=0.1. The results shown are for b=5. �a�
Comparison of the static force �solid curve, cross� and the equilib-
rium solvation force �broken curve, circle�. �b� Comparison of the
dynamic force �solid curve, cross� and the Stokes �broken curve�
and Brenner �solid curve, circle� predictions.
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The simulations presented in this paper primarily serve to
illustrate the basic interplay between static and dynamic
force contributions and were purposely kept extremely
simple. Thus, no attempt was made to make the wall-fluid
interactions more realistic by including molecular detail.
However, Vergeles et al. �4� have presented data for both
smooth and molecular walls. Very close to the wall �within
2�� the resistance force is found to be strongly dependent on
the wall details. However, by presenting the total force act-
ing on the moving sphere �cf. Fig. 6 of Ref. �4��, it is not
straightforward to interpret the observed differences. In prin-
ciple, they could be attributed to a difference in the static
�i.e., solvation� force, or they could point to differences be-
tween the dynamic contributions �e.g., slip versus no slip�, or
a combination of both �20�.

The presence of the solvation force complicates answer-
ing the questions that Vergeles et al. �3,4� set out to address.
To paraphrase: to what extent does Brenner’s prediction
work at a small length scale, and how is the unphysical di-
vergence of Brenner’s solution resolved in a molecular sys-
tem? The calculations presented in the present paper demon-
strate that at a minimum one must consider a range of
approach velocities, and consider the variation of the force
with the direction of the sphere. The conclusion put forward
by Vergeles et al., namely that “Brenner’s solution works for
most values of h even at a molecular scale,” must therefore
be considered premature. As this paper shows, for small
enough U Brenner’s solution must always seriously under-
predict the drag force, while for large U the systems studied
indicate that it overpredicts. By restricting the simulations to
some very large U �21�, Vergeles et al. �3,4� inadvertently
obscured some important issues and insights that can be il-
lustrated with MD simulations.

Among significant insights, we count the decomposition
of the drag force. This approach gives a direct indication of
the presence of a static contribution and a dynamic contribu-
tion that is, like the hydrodynamic contribution, antisymmet-
ric. The suggested decomposition of the drag force is quite
general and satisfies obvious requirements. For example, for
a hypothetical system of a sphere subject to the sum Bren-
ner’s force and a direct wall-sphere force, the decomposition
is exact. The decomposition proposed here can be applied to
any sphere-wall data whether generated numerically or ex-
perimentally. It should prove to be particularly useful in the
analysis of experimental measurements of moving AFM or
IFM probes. If the experiment can be performed by moving
a sphere both in and out, then Eqs. �14� and �15� at a mini-
mum provide an internal consistency check on the data.
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